Aquifer Storage and Recovery (ASR)

Aquifer Storage and Recovery

Injecting or pumping water into an aquifer for storage and use at a latter time is known as Aquifer Storage and Recovery, or ASR. The rationale behind ASR is that during times of hydrologic plenty, extra water can be withdrawn from a river (or other source) and injected and stored in an aquifer to be withdrawn at a later time when the original water source is low. Some ASR facilities inject treated wastewater rather than surface water into an aquifer, while other facilities inject groundwater from a different aquifer.

The idea behind ASR is not new; nomads have utilized a rudimentary form of this technology for centuries in present day Turkmenistan. Rainfall captured in trenches is funneled toward and infiltrated into more permeable sand dunes where it is later recovered by way of hand-dug wells. The first ‘modern-day’ ASR facility was constructed in 1968 in Wildwood, New Jersey; this facility is still in operation. Currently, ASR is utilized in 11 countries. There are 95 facilities in the United States


 There are three ASR facilities in Texas. The City of El Paso developed the first facility in the state in 1985. This facility injects 10 million gallons per day (mgd) of treated wastewater into aquifers 300 to 835 feet below the ground. The City of Kerrville is the only facility in the state that utilizes the traditional ASR method: more than 2.5 mgd of water from the Guadalupe River is injected into wells 500-600 feet deep. The largest facility in Texas is the 60 mgd facility south of San Antonio. Here, water from the highly permeable limestone Edwards Aquifer, the City’s primary source, is injected 400 to 600 feet into the sandy, less permeable Carrizo Aquifer.


One environmental concern about ASR is that source waters (surface or groundwater) could be over utilized to fill the ASR. If permits to withdraw the source water do not have sufficient environmental flow standards, decreased stream flows, spring flows, or groundwater level declines could result.

A second concern relates to aquifer contamination. Like most other states, Texas requires that injected water must be treated to drinking water standards prior to injection in order to protect the quality of the receiving aquifer. However, differences in water chemistry between the injected water and receiving aquifer could cause metals such as arsenic, hydrogen sulfide or uranium in the surrounding geologic formation to dissolve in the injected water.

Finally, the source water for ASR generally has to be treated both before it is injected as well as after it is withdrawn. This treatment, along with pumping the water to and from the ASR facility, makes ASR more energy intensive than some other water supply options.


The largest environmental benefit of utilizing ASR as a water supply strategy is that it can potentially offset the need to construct more environmentally damaging projects such as dams creating reservoirs on Texas rivers. Not only do reservoirs have significant ecological impacts to our rivers and bays, they also result in the loss of prime agricultural timberlands.

SAWS Aquifer Storage and Recovery Facility

SAWS Aquifer Storage and Recovery Facility

ASR projects do suffer some ‘loss’ of source water to the aquifer, depending on the characteristics of the aquifer. However, these losses pale in comparison to the considerable volumes of water lost to evaporation from surface water reservoirs, especially in Texas.

For example, the San Antonio Water System ASR is estimated to store between 224,000 and 242,000 acre-feet. This volume of water is similar to the conservation capacity of Lake Arrowhead (surface area of 5,369 acres) near Wichita Falls. It is estimated that evaporative losses in 2011 in the Wichita Falls area approached seven feet per acre, resulting to a loss of over 35,000 acre-feet of water from that reservoir in a single year.


While environmental concerns about ASR do exist, many of these concerns can be addressed through careful management and operational safeguards. On the other hand, the environmental damage and socio-economic disruption associated with dam and reservoir construction is large and essentially unavoidable, not to mention waste of water to evaporation.

In areas of the state that have already experienced significant groundwater level declines, ASR as a water supply strategy appears especially pragmatic due to the increased storage capacity in the depleted aquifers. This is especially true in the Dallas metroplex area, where current reservoir strategies are creating heated interregional conflicts.



Case Study: Proposed Marvin Nichols Reservoir

The proposed massive Marvin Nichols dam is a prime example of the unnecessary reliance on new reservoirs and pipelines instead of water conservation. This dam would create one of the largest reservoirs in Texas, flooding over 72,000 acres on the Sulphur River in rural Northeast Texas

Get Involved

Learn how you can help at home, in your community and at the state level to improve the way Texas plans for meeting future water needs.

Reservoirs or Conservation?

The 2012 State Water Plan proposes building 26 reservoirs and hundreds of miles of pipelines to move water to cities. Many of these projects are unnecessary and could be avoided with responsible water conservation measures.

Steps to Improve Texas Water Planning

The State Water Plan and water planning process do not fully take advantage of water conservation and drought response and fail to adequately address the needs of fish, wildlife, and the environment.

The State Water Plan

The Texas State Water Plan projects long-term water demands for all regions of the state and proposes water supply solutions to meet those demands. It affects all Texans.

UPDATED: Regional Water Planning Process

Texas’ regional water planning process was initiated by Senate Bill 1 in 1997. This process charges sixteen regional water planning groups with the development of long-term regional water plans that are assembled into a State Water Plan.

NEW: Region H Water Planning

NEW: South Central Texas Regional Water Planning (Region L)

NEW: Lower Colorado Regional Water Planning (Region K)

NEW: Region C Water Planning

Useful Links and Resources

Useful links to additional information on state and regional water planning in Texas.